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Atomic force microscopes and optical tweezers are widely used to
probe the mechanical properties of individual molecules and
molecular interactions, by exerting mechanical forces that induce
transitions such as unfolding or dissociation. These transitions
often occur under nonequilibrium conditions and are associated
with hysteresis effects—features usually taken to preclude the
extraction of equilibrium information from the experimental
data. But fluctuation theorems1–5 allow us to relate the work
along nonequilibrium trajectories to thermodynamic free-energy
differences. They have been shown to be applicable to single-
molecule force measurements6 and have already provided infor-
mation on the folding free energy of a RNA hairpin7,8. Here we
show that the Crooks fluctuation theorem9 can be used to deter-
mine folding free energies for folding and unfolding processes
occurring in weak as well as strong nonequilibrium regimes,
thereby providing a test of its validity under such conditions.
We use optical tweezers10 to measure repeatedly the mechanical
work associated with the unfolding and refolding of a small RNA
hairpin11 and an RNA three-helix junction12. The resultant work
distributions are then analysed according to the theorem and
allow us to determine the difference in folding free energy between
an RNA molecule and a mutant differing only by one base pair, and
the thermodynamic stabilizing effect of magnesium ions on the
RNA structure.
The Crooks fluctuation theorem9 (CFT) predicts a symmetry

relation in the work fluctuations associated with the forward and
reverse changes a system undergoes as it is driven away from thermal
equilibrium by the action of an external perturbation. This theorem
applies to processes that are microscopically reversible, and its
experimental evaluation in small systems is crucial to understand
better the foundations of nonequilibrium physics13. A consequence
of the CFT is Jarzynski’s equality14, which relates the equilibrium
free-energy difference DG between two equilibrium states to an
exponential average (denoted by angle brackets) of the work done
on the system, W, taken over an infinite number of repeated none-
quilibrium experiments, expð2DG=kBTÞ ¼ kexpð2W=kBTÞl. The
equality has been developed6 into a formalism that allows us to use
nonequilibrium single-molecule pulling experiments to reconstruct
free-energy profiles or potentials of mean force15 along reaction
coordinates. Experimental testing of Jarzynski’s equality in single-
molecule force experiments16 used the P5ab RNA hairpin7,8, which
can be folded and unfolded quasi-reversibly. But for processes that
occur far from equilibrium, the applicability of Jarzynski’s equality is
hampered by large statistical uncertainties that arise from the
sensitivity of the exponential average to rare events17,18 (low values
of W). Moreover, although the equality kWl¼ DG holds for pro-
cesses occurring near equilibrium, spatial drift in the experimental

system usually makes it difficult in practice to extract unfolding free
energies using small loading rates (below a few pN s21). Drift effects
decrease noticeably for larger pulling speeds, making it possible to
obtain more reliable experimental data (and also good statistics as a
large number of pulls can be executed in a reasonable time), but at the
expense of a more irreversible unfolding process. Here we show that
significant improvements can be obtained by using the CFT, which
provides a more robust and more rapidly converging method to
extract equilibrium free energies from non-equilibrium processes.
The CFTallows us to quantify the amount of hysteresis observed in

the values of the irreversible work done to unfold and refold a
macromolecule. Let PU(W) denote the probability distribution of
the values of the work performed on the molecule in an infinite
number of pulling experiments along the unfolding (U) process, and
define PR(W) analogously for the reverse (R) process. For the CFT to
be applicable, the unfolding and refolding processes need to be
related by time-reversal symmetry, that is, in our experiments, the
optical trap used to manipulate the molecule must be moved at the
same speeds during unfolding and refolding. Moreover, the molecu-
lar transition probed always has to start in an equilibrium state
(folded in the unfolding process, and denatured or unfolded in the
refolding process) and reach a well-defined final state. The CFT9 then
predicts that:

PUðWÞ

PRð2WÞ
¼ exp

W 2DG

kBT

� �
ð1Þ

where DG is the free-energy change between the final and the initial
states, and thus equal to the reversible work associated with this
process. Note that the CFT does not require that the system studied
reaches its final equilibrium state immediately after the unfolding
and refolding processes have been completed; it is only the control
parameter that needs to attain its final value, whereas the systemmay
continue to equilibrate to a well-defined state that is consistent with
the final value of the control parameter. The equilibration occurs
without change of the control parameter, and therefore contributes
no work. In principle,W is an integral over the external variation of a
control parameter9, for example, the position of the optical trap or
the time6. In our experiments,W is well approximated by the familiar
force-versus-extension integral:

W ¼
XNs

i¼1

FiDxi ð2Þ

where x i is the distance between the ends of the molecule and N s is
the number of intervals used in the sum (see ref. 6 for a thorough
discussion of this issue). Relation (1) quantifies hysteretic effects in
the pulling experiment: work values larger than DG occur most often
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along the unfolding path while (absolute) values smaller than DG
occur more often along the refolding path. As can be seen from
equation (1), the CFT states that although PU(W), PR(2W) depend
on the pulling protocol, their ratio depends only on the value of DG.
Thus the value of DG can be determined once the two distributions
are known. In particular, the two distributions cross at W ¼ DG:

PUðWÞ ¼ PRð2WÞ )W ¼ DG ð3Þ

regardless of the pulling speed. Although the simple identity (3)
already gives an estimate of DG, it is not necessarily very precise
because it uses only the local behaviour of the distribution around
W ¼ DG. Using the whole work distribution increases the precision
of the free-energy estimate19. In particular, as we show below, when
the overlapping region of work values between the unfolding and
refolding work distributions is too narrow (as may happen for large
values of the average dissipated work, defined as kWdisl ¼ kWl 2
DG), the use of Bennett’s acceptance ratio method20 makes it possible
to extract accurate estimates of DG using the CFT (see the Sup-
plementary Information).
We first experimentally test the validity of the CFT for a molecular

transition occurring near equilibrium. For this, we use a short
interfering (si)RNA hairpin that targets the messenger RNA of the
CD4 receptor of the human immunodeficiency virus (HIV)11 and
that unfolds irreversibly but not too far from equilibrium at acces-
sible experimental pulling speeds (dissipated work values less than
6kBT). Under these conditions, the unfolding and refolding work
distributions overlap over a sufficiently large range of work values to
justify the use of the direct method to experimentally test equation
(1). The work done on the molecules during either pulling or
relaxation is given by the areas below the corresponding force–
extension curves (Fig. 1).
Unfolding and refolding work distributions at three different

pulling speeds are shown in Fig. 2. Irreversibility increases with the
pulling speed and unfolding–refolding work distributions become
progressively more separated. Note, however, that the unfolding and
the refolding distributions cross at a value of the work DG¼
110:3^ 0:5kBT that does not depend on the pulling speed, as
predicted by equation (3). Moreover, the work distributions also

satisfy the CFT, that is, equation (1) (see the Supplementary
Information). We also notice that work distributions are compatible
with, and can be fitted to, gaussian distributions (data not shown).
After subtracting the contribution arising from the entropy loss due
to the stretching of the molecular handles attached on both sides of
the hairpin (DGhandles ¼ 23.8 kBT) and of the extended single-
stranded (ss)RNA ðDGssRNA ¼ 23:7^ 1kBTÞ from the total work,
DGexp ¼ 110:3^ 0:5kBT, we obtain for the free energy of unfolding
at zero forceDG

exp
0 ¼ 62:8^ 1:5kBT ¼ 37:2^ 1kcalmol21 (at 258C,

in 100mM Tris-HCl, pH 8.1, 1mM EDTA), in excellent agreement
with the result obtained using the Visual OMP from DNA software21

DGmfold
0 ¼ 38kcalmol21 (at 258C, in 100mM NaCl).
To extend the experimental test of the validity of the CFT to the

very-far-from-equilibrium regime where the work distributions are
no longer gaussian, we apply the CFT to determine: (1) the difference
in folding free energy between an RNA molecule and a mutant that
differs only by one base-pair, and (2) the thermodynamic stabilizing
effect of Mg2þ ions on the RNA structure. The RNAwe consider is a
three-helix junction of the 16S ribosomal RNA of Escherichia coli12

that binds the S15 protein. The secondary structure of this RNA is a
common feature in RNA structures22–24 that plays, in this case, a
crucial role in the folding of the central domain of the 30S ribosomal
subunit. For comparison, and to verify the accuracy of the method,
we have pulled the wild type and a CzG to GzC mutant (C754G to
G587C) of the three-helix junction.
Figure 3 depicts the unfolding and refolding work distributions for

the wild-type and mutant molecules (work values were binned into
about 10–20 equally spaced intervals). For both molecules, the
distributions display a very narrow overlapping region. In contrast
with the hairpin distribution, the average dissipated work for the
unfolding pathway is now much larger—in the range 20–40kBT —
and the unfolding work distribution shows a large tail and strong
deviations from gaussian behaviour. Thus, these molecules are ideal
to test the validity of equation (1) in the far-from-equilibrium
regime. As shown in the inset of Fig. 3, the plot of the log ratio of
the unfolding to the refolding probabilities versus total work done on
the molecule can be fitted to a straight line with a slope of 1.06, thus
establishing the validity of the CFT (see equation (1)) under far-
from-equilibrium conditions. Ourmeasurements reveal the presence
of long tails in the work distribution PU(W) along the unfolding path

Figure 2 | Test of the CFT using an RNA hairpin. Work distributions for
RNA unfolding (continuous lines) and refolding (dashed lines). We plot
negative work, PR(2W), for refolding. Statistics: 130 pulls and three
molecules (r ¼ 1:5 pN s21), 380 pulls and four molecules (r ¼ 7:5 pN s21),
700 pulls and three molecules (r ¼ 20:0 pN s21), for a total of ten separate
experiments. Good reproducibility was obtained among molecules (see
Supplementary Fig. S2). Work values were binned into about ten equally
spaced intervals. Unfolding and refolding distributions at different speeds
show a common crossing around DG¼ 110:3kBT.

Figure 1 | Force–extension curves. The stochasticity of the unfolding and
refolding process is characterized by a distribution of unfolding or refolding
work trajectories. Five unfolding (orange) and refolding (blue) force–
extension curves for the RNA hairpin are shown (loading rate of 7.5 pN s21).
The blue area under the curve represents the work returned to the machine
as the molecule switches from the unfolded to the folded state. The RNA
sequence is shown as an inset.
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and narrow work distributions PRðWÞ along the refolding path.
These distributions complement each other, one being large where
the other is small, thereby providing thermodynamically important
information about the free-energy landscape.
Bennett’s acceptance ratio method gives DGexp ¼ 154:1^ 0:4kBT

and DGexp ¼ 157:9^ 0:2kBT for unfolding the wild-type and
mutant types, respectively, giving a difference between the two
forms DDG

exp
0 ¼ DDGexp ¼ 3:8^ 0:6kBT. After subtracting the

(identical for both molecules) handle and RNA entropy loss contri-
butions (97^ 1kBT) we get DG

exp
0 ¼ 57^ 1:5kBT (wild type) and

DG
exp
0 ¼ 60:8^ 1:5kBT (mutant), the error increasing owing to the

uncertainty in the contributions coming from the stretching of
ssRNA. Free-energy prediction programs such as Mfold25 and Visual
OMP21 give a DDGmfold

0 ¼ 2^ 2kBT between the forms (at 25 8C and
100mM NaCl). Thus, when combined with acceptance ratio
methods, the CFT furnishes a method precise enough to determine
the difference in the folding free energies of RNAmolecules differing
only by one base pair in 34 base pairs.
Finally we apply equation (1) to obtain the free energy of

stabilization by Mg2þ of the S15 three-helix junction. These values
are often difficult to access using bulk methods because melting
temperatures of tertiary folded RNAs are frequently higher than the
boiling point of water, and Mg2þ catalyses the hydrolysis of RNA at
increased temperatures26. Figure 4 depicts the work histograms in the
presence and absence ofMg2þ (at constant ionic strength); stretching
contributions differ in the presence and absence of magnesium ions
(116.8 kBT and 97 kBT, respectively). These values have been sub-
tracted from the work data to properly compare the unfolding free
energies of both molecules. The strong increase of irreversibility due
to Mg2þ can be seen in the large value of the average dissipated work
(about 50 kBT along the unfolding reaction and 16 kBT along the
refolding path). Applying Bennett’s acceptance ratio method for the
molecule in the presence of magnesium yields DGexp ¼ 205:5^
1:5kBT and (after subtracting the stretching contributions) gives
DGexp

0
¼ 88:7^ 2:5kBT for the unfolding reaction of the wild-type

junction in 4mMMgCl2. The difference in free energies of unfolding
in the presence and absence ofMg2þ,DDG

exp
0 ¼231:7^ 2kBT, gives

the free energy of stabilization associated with the binding of Mg2þ

Figure 3 | Free-energy recovery and test of the CFT for non-gaussian work
distributions. Experiments were carried out on the wild-type and mutant
S15 three-helix junction without Mg2þ. Unfolding (continuous lines) and
refolding (dashed lines) work distributions. Statistics: 900 pulls and two
molecules (wild type, purple); 1,200 pulls and five molecules (mutant type,
orange). Crossings between distributions are indicated by black circles.
Work histograms were found to be reproducible among different molecules
(error bars indicating the range of variability). Inset, test of the CFT for the
mutant. Data have been linearly interpolated between contiguous bins of the
unfolding and refolding work distributions.

Figure 4 | Use of CFT to extract the stabilizing contribution of Mg21 to the
free energy of the S15 three-helix junction (wild type). Unfolding
(continuous lines) and refolding (dashed lines) work distributions. Green
curves, 450 pulls and two molecules in Mg2þ; purple curves, 900 pulls and
two molecules without Mg2þ. Crossings between distributions are indicated
by black circles. Work histograms are reproducible between the molecules
(error bars indicating the range of variability). Inset, the same histograms in
logarithmic scale (axes labels as for the main panel) showing (vertical black
bars) the regions of work values where unfolding and refolding distributions
are expected to cross each other by Bennett’s acceptance ratio method
(Supplementary Information).

Table 1 | Summary of results obtained for all molecules

Molecule WU
m WR

m jU jR Wð2Þ
cum WU

J WR
J West

J DGexp DGexp
0 WU

dis WR
dis RU RR

Hairpin (1.5 pN s21)* 110.9 108.7 2.35 2.21 109.7 (0.2) 107.4 (0.7) 110.9 (0.2) 109.1 (0.5) 110.0 (0.2) 62.5 (1.2) 0.9 1.3 3.1 1.9
Hairpin (7.5 pN s21) 113.8 106.6 2.63 2.84 110.3 (0.2) 109.7 (0.7) 110.9 (0.5) 110.3 (0.5) 110.3 (0.5) 62.8 (1.5) 3.5 3.7 0.98 1.10
Hairpin (20 pN s21) 115.7 104.1 3.2 3.5 110.1 (0.2) 110.2 (0.7) 108.6 (0.2) 109.4 (0.4) 110.2 (0.6) 62.9 (1.6) 5.4 6.2 0.94 0.98
S15 (wild, no Mg) 191.3 145.9 11.3 2.9 158.7 (0.8) 155.2 (1.4) 149.3 (0.2) 152.2 (0.7) 154.1 (0.4) 57.0 (1.5) 36.3 9.1 1.75 0.46
S15 (mutant, no Mg) 176.5 153.4 10.6 2.1 156.0 (0.4) 152.4 (5.0) 155.7 (0.2) 154.1 (0.3) 157.9 (0.2) 60.8 (1.5) 18.6 4.5 3.02 0.49
S15 (wild, Mg) 256.4 190.3 12.2 5.0 213.0 (1.3) 207.0 (4.0) 199.8 (0.6) 203.6 (2.0) 205.5 (1.5) 88.7 (2.5) 50.9 15.2 1.46 0.82

WU
m and WR

m, jU and jR, W
U
J and WR

J are the average total work, standard deviations and predictions obtained by using Jarzynski’s equality along the unfolding (U) and refolding (R) paths. Wð2Þ
cum

is the estimate obtained by Hummer30, Wð2Þ
cum ¼ ðWU

m þWR
mÞ=22 ðj2U 2 j2RÞ=12kBT, which gives the leading correction to the linear response prediction, West

J is the average of the estimates
obtained by using Jarzynski’s equality along the unfolding and refolding paths West

J ¼ ðWU
J þWR

J Þ=2; DG
exp is our best estimate obtained by using the acceptance ratio method; DGexp

0 is the
final estimate for the unfolding free energy at zero force after subtracting the handles contribution, WU;R

dis ¼ jWU;R 2DGexpj is the average dissipated work (for the analysis of the hairpin data

we took DGexp ¼ 110:3 for all pulling rates) and RU;R ¼
j2
U;R

2kBTW
U;R
dis

is a parameter that is equal to 1 for gaussian work distributions8. Statistical errors are given for Jarzynski’s equality and the

crossing estimates. These were obtained using the bootstrap method. All work values (except DGexp
0 ) include the handle and RNA stretching contributions and are given in units of kBT at

T ¼ 298K. In parentheses we indicate the errors in units of kBT.
*Data for the RNA hairpin at 1.5 pN s21 are also included for completion; however, at such low loading rates drift effects are very large and data are very noisy as revealed by the values of RU

and RR, which differ too much from 1.
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ions to the S15 three-helix junction through both specific and non-
specific (shielding) interactions.
These results illustrate that when used in conjunction with an

appropriate fluctuation theorem, nonequilibrium single-molecule
force measurements can provide equilibrium information such as
folding free energies, even if the process studied occurs under far-
from-equilibrium conditions. The approach works using soft optical
traps but is probably limited to processes that dissipate less than
100 kBT. Whether it can be extended to studies that use much stiffer
atomic-force-microscope cantilevers to pull proteins27 is at present
being examined in our laboratory. Finally, the initial and final states
of molecular interactions such as ligand binding or macromolecular
assembly usually do not correspond to measurable molecular exten-
sions; in such cases, the approach as described cannot at present be
applied.

METHODS
Sample preparation. The RNAmolecules were prepared as previously described
by ref. 16. Each DNA sequence corresponding to the three different RNAs was
cloned separately into pBR322 vector between EcoRI and HindIII sites. A
polymerase chain reaction (PCR) was used to amplify a DNA sequence contain-
ing an upstream T7 promoter, the RNA sequence of interest and flanking DNA
sequences corresponding to the ‘handles’. The handles correspond to a sequence
of pBR322 (NCBI ID ‘J01749’) from nucleotides 3838 to 1 and from 29 to 629,
respectively. The three RNA sequences were transcribed in vitro using T7 RNA
polymerase28. Two DNA handles were synthesized by PCR. The DNA handle
upstream of the RNA was biotinylated at the 3

0
-end, whereas a digoxigenin

moiety was attached to the 5
0
-end of the other handle. The RNA and two DNA

handles were annealed by heating samples to 85 8C, followed by a slow cooling
down to room temperature. The RNA hairpin was pulled in 100mM Tris-HCl,
pH 8.1, 1mM EDTA buffer. The S15 three-helix junction and the mutant have
been pulled in 62mMKCl, 10mMHEPES pH7.8 buffer. In 4mMMgCl2 the KCl
concentrationwas adjusted to 50mM towork at the same ionic strength as in the
absence of Mg2þ.
Work measurements. Work probability distributions were obtained frommany
force–extension curves for a given molecule and aligned to a worm-like chain
curve that best fitted the force–extension data at forces below the range of forces
where the molecule unfolds. This procedure minimizes the effect of machine
drift on the measured work values. For the worm-like chain fits we used
P < 10 nm and P < 1 nm for the persistence lengths of the DNA/RNA hybrid
handles and ssRNA respectively. Work values were integrated along the range of
extension: [355 nm, 380 nm] for the hairpin; [326 nm, 392 nm] for the S15 three-
helix junctionwithoutmagnesium (wild andmutant); and [337 nm, 398 nm] for
the S15 three-helix junction with magnesium. The free-energy contributions
from stretching the handles and the ssRNA were then obtained by numerical
integration of the worm-like chain reference curves using the values for the
persistence and contour lengths of the polymers. To estimate the free energy of
unfolding at zero, DG0

exp, we subtract the free-energy contribution of the
hybrid handles and ssRNA from the total reversible work across the transition,
DG exp, by using the expression7,29: DG

exp
0 ¼ DGexp 2DGhandles 2DGssRNA, where

DGhandles,DG ssRNA are the entropy loss contributions due to the stretching of the
molecular handles attached on both sides of the hairpin and of the extended
ssRNA, respectively.
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